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The research is concerned with developing a new approach to enhancing fault tolerance 
of flight control systems. The original motivation for fault-tolerant control comes from 
the need for safe operation of control elements (e.g. actuators) in the event of hardware 
failures in high reliability systems. One such example is modem space vehicle subjected 
to actuator/sensor impairments. A major task in flight control is to revise the control 
policy to balance impairment delectability and to achieve sufficient robustness. This 
involves careful selection of types and parameters of the controllers and the impairment 
detecting filters used. It also involves a decision, upon the identification of some failures, 
on whether and how a control reconfiguration should take place in order to maintain a 
certain system performance level. 

In this project new flight dynamic model under uncertain flight conditions is considered, 
in which the effects of both ramp and jump faults are reflected. Stabilization algorithms 
based on neural network and adaptive method are derived. The control algorithms are 
shown to be effective in dealing with uncertain dynamics due to external disturbances 
and unpredictable faults. The overall strategy is easy to set up and the computation 
involved is much less as compared with other strategies. Computer simulation software is 
developed. A serious of simulation studies have been conducted with varying flight 
conditions. 



Table of Contents 

Section 

summary 

Table of Contents 

1. Introduction 

2. Problem Formulation 

3. Neuro-adaptive Fault-tolerant Control 

4. Simulation Verification 

5. Conclusion and Future Work 

6. Acknowledgement 

7. References 

i 

ii 

1 

1 

5 

11 

16 

17 

17 



1. Introduction 

A growing importance has been given in the last few years to the design of a flight 

control system able to accomplish the reconfiguration of the aircraft following battle 

damage [I]-[5]. While there exists many control methods for flight control, most of the 

existing methods are based on "healthy" aircraft model in that the control algorithms are 

derived from system dynamics without any faults in the system. Evidently, automatic 

control plays a crucial role in achieving these features. 

This work is concerned with the development and analysis of neural network based 

control algorithms for flight vehicles with faulty dynamics. A neural-adaptive method to 

enhance flight vehicle stability under unpredictable faults is presented. The method is 

based on the dynamic model coupled with the effect of unpredictable faults and 

disturbances. It is shown that with the proposed strategy the effect of faults on the system 

performance can be effectively suppressed. The novelty of the proposed approach also 

lies in the fact that it is fairly easy to set up and the computation involved is much less as 
compared with other strategies. An example is used to verify the validity of the proposed 

approach. 

2. Problem Formulation 

The major thrust of this research is directed toward the stabilization of flight vehicle 

subject to subsystem failures. The dynamic model considered is of the following form, 

M(.)F + N ( i ,  r )  +d(z) = Bu (1) 

with 

M ( . ) = M o + p ( t - T f ) M f ( . )  

N(.) = No k f l ( t  - T f ) N f ( . )  

where M E  Rm is the inertia matrix depending on the mass property of the vehicle 

structure, r~ Rn denotes the coordinatedstates of the system, N E  Rnuz represents the 
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term related to damping and stiffness properties of the system, d e  Rn represents the 

external disturbance, u E Rm denotes the control signals of the actuator, and BE Rm is 

the control input influence matrix reflecting the location of the actuator distributed along 

the vehicle structure. In most cases B is a matrix with 0 and 1 as its elements. 

The notation " f " is used in the matrices M and N to emphasize the fact that both the 

direction and the magnitude of the uncertainties due to modeling approximation and 

possible faults are not available for control design. 

unknown portion of the dynamics due to a fault occurring at time t 2 Tf . The function 

fl(t - Tf ) takes the form 

which covers both jump and continuously time-varying (ramp) faults. For the system to 

admit a feasible solution under faulty condition, we need to assume that there exists a 

positive constant E,  >o such that 

Tiis assumption implies hat the fault condition under consideration is within atkkabie 

range in that it does not dominate the value of A4 under normal conditions. In such a case, 

the symmetric and positive definite property of the mass matrix still holds, Le., 

M (.) = M ( . ) T  > 0 (2b) 

Whenever a fault occurs, system dynamics may be changes in many different ways. In 

such a case, our primary objective is to design a proper control to maintain the stability of 

the system. Note that essentially two system modes are involved under any fault: critical 

modes (denoted by G )  and non-critical modes (denoted by r , ) .  The critical modes 

should be stabilized explicitly for they are directly related to system safety. 
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For control design we assume that the rank of B is rn, which implies physically that there 

are rn actuators mounted at appropriate positions in the vehicle for fault accommodation. 

Obviously, only the mode, with which there is an actuator, can be actively damped out. 

Therefore, to make full use of the available actuators, we consider the case of dim( rc ) = 

rn, thus dim( rm) = n-rn. Under the collocation condition (i.e., sensors and actuators are 

located at the same places), we have 

rc = BTrE Q, c Rm, rnc = PjrE Qnc c Rn-m (3) 

where Pi is a projection matrix. Clearly, Q = SZ, @QW, here $2 denotes the whole 

coordinate space of practical interest. In this study, our objective is to develop a control 

scheme that reduces both lrci and Ii,[ to an acceptable level, i.e., 

11% II € 1  ' pc I1 5 E 2 

where and 

the next section. The following lemma is needed to develop the control strategy. 

Lemma: 

Let b > 0 be a constant chosen by the designer, and define 

are small numbers. A strategy achieving this objective is developed in 

(4a) ~ = ( B ~ M - ' B )  -1 B T ( i + b r )  

If ran(Bj = rn , then 

Proof: 

Let 

z = i-, + br, 

then from (3)  and (4a)-(4b) we have 

- 3 -  



s = (BTM-'B)-'z (k) 

With rank(~) = m  and the property of M as in (2b), it follows that B ~ M - ~ B ~ S  symmetric and 

positive definite. Therefore us1 + Oas t + = implies that + Oas c + 0 0 .  By the 

definition of z as in (4b), the results as stated in the lemma are readily established. 

As motivated by this lemma, we first construct the following signal 

T z = iC + br, = B (it br) (5)  

where b > 0 is a positive number chosen arbitrarily, then we focus on making z go to 

zero or be less than a small constant which is determined by the required precision. 

Note that this signal is available as long as rc and tC are measurable. From (1) and (5)  it 

can be shown that 

i = P(.)u + L(.) (Gal 

where 

P(.) = B T M  --'B 

4.) = bBT i - B7M--' (N + d )  (W 

It should be emphasized that P and L are unavailable due to the fact that the structure 

zon*&iis fzilt a d  zxtcxd &at~~imcc. This cdls f ~ r  a ~XGE dedicated control design 

approach for such a system. 

It is interesting to note that the system model (l), although uncertain, possesses the 

following properties. 

1) M-' =KT > O .  

2) If B is full row rank, then there exists constants cmin and c- such that 
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T where c- 2 cmin > 0 denotes the maximum and minimum eigenvalues of B M-’B 

respectively . 

Proof: 

The proposition can be easily shown by noting that when B is full row rank BTM-lB is 

symmetric and positive definite. 

In our later controller design and stability analysis, we only use the fact that such 

constants c- and cmax exist, while the actual estimation of these constants is not needed. 

To close this section, we re-state the control objective as follows: find a smooth control u 

without using the detailed information of P(.) and L(.) such that the system tracking error 

vector z locks in a compact set containing origin as time goes by, i.e., lbll I ,u as t > T 

(,u is a small constant related to control precision). 

3. Neuro-adaptive Fault-tolerant Control 

The nonlinear and uncertain nature of P(.) and L(.) represents the major challenge in 

control system design. The typical approach is to re-organize L(.) as a linear combination 

of some nonlinear functions. This has been the basis for most stable adaptive controllers, 

known as the regressor bused method in literature [6]. For complex systems such as 

composite structures, this method involves complicated design procedures and heavy 

computations. In the early work of neural network based control, a common practice is 

to construct multilayer NNs and train these networks via gradient algorithms [7]-[9], 

[ 121-[ 131 to approximate P(.) and L(.) respectively. Recognizing the potential instability 

associated with these algorithms, several researchers have proposed NN control schemes 

using on-line and stable training mechanisms based on Lyapunov stability theory [11]- 

WI. 

In this work we develop a neuro-adaptive control scheme for the system (1). As a first 

step, we “reconstruct” L(.) via the first NN unit as 
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where & represents the priori (crude) estimate of L, WI E Pm is the "optimal" weights 

of the NN, pi E R" is the basis function whose selections typically include linear 

function, sigmoidal function, hyperbolic tangent function, radial basis functions etc. [7]- 

i151. 

Let the discrepancy between L and LNN be denoted by 

which is termed as NN reconstruction error in literature. With the support of the 

approximate theory of multilayer neural networks[7]-[8], such an error can be made 

arbitrarily small provided that certain conditions (e.g., sufficiently large number of 

neurons, sufficient smoothness of L etc.) are satisfied. This has been the basis for many 

NN based control laws [ 161-[ 191. 

Note that, however, in reality one can only construct a network with a finite number of 

neurons and that the nonlinear function being reconstructed is not smooth enough, as in 

the case of a jump fault. Thus the approximation capabilities of the network can be 

guaranteed only on a subset of the entire system state space. In other words, during the 

system operation, the reconstruction error is bounded by a constant sometimes, but 

unbounded at other times. For this reason, the NN reconstruction error should be treated 

carefully in control design because simply assuming that 1/41 is bounded by a constant 

does not warrant the success of the control scheme. For executing the idea, in our 

development, we remodel reconstruction error as follows: 

€ = c q  +(1-c)€2 (9) 

with 

1 
0 

if the NN works satisfactorily 
if the NN fails to work well 

To make the problem solvable, we make the assumption that 

II €1 IF do < 0% and llE2 IWI L -  r, -WI% II= a . 1  - 
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Remark 2 

The above model seems to be more reasonable to reflect the fact that in general the 

reconstruction error could take any form, depending on many factors such as the basis 

function, the number of neurons, the structure of the networks, the weight updating algorithms 

as well as the original nonlinear function to be approximated. 

The point to be made is that 41 and dl(.) are still unavailable and should not be included in 

the control scheme directly. Another major challenge stems from the fact that we do not 

know when the NN behaves well. Sanner and Slotine 1161 proposed a method of 

partitioning the state space into & and 4 and assumed that the NN works satisfactorily 

within &. The problem with this method is that it may be practically hard to find such 

subset A: at which the NN works fine during the system operation. 

Here we take a different method to address this issue. Namely, we incoprate two NN 

units in the control scheme, with the first NN unit compensating the lumped 

nonlinearitieduncertainties and the second NN unit attenuating the effects due to the NN 

reconstruction error and the other resulting uncertainties. The overall control scheme is 

given by 

where 

(lob) 

denotes the control action of the first NN unit and uc is a compensating signal from the 

second NN unit to be specified. Here ki~> 0 is a constant chosen by the designer, W is the 

estimation of the ideal weight values, Lo is the prior (crude) estimation of L and y ~ i s  

again the basis function vector. With the control of the above scheme, the original 

system (6a) becomes 

i = - b P z  + W&I - Pu, + q 

where WI = WI - WI is weight estimation error and 



is the resultant uncertainty to be attenuated by the second NN unit. 

The design of the second NN unit consists of two steps. The first step is to formulate the 

“magnitude” of q, which allows the rn-dimensional nonlinear function to be “funneled” 

into a scalar nonlinear function. The second step is to build a NN to fight against the 

resulting scalar quantity, i.e., the “funneling effect” of q. For this reason the second NN 
is named as a funneling “.We use the Euclidean norm to funnel the effect of q, i.e. 

To find the expression for x we make the assumption that there exists some unknown 

constants and some scalar nonlinear functions yi such that 

where N, is an integer, which, together with (8) and (12), leads to 

with 

Note that while yi are known scalar functions, q are unknown in general, which makes y 

unobtainable. With the funneling NN, y is estimated as 

where N = Nt +3, 

satisfying 

denotes the estimated weights and vni(.) are some basis functions 
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Based upon f , the control action of the second NN unit is given by 

(16) 

where v > 0 is a small number chosen by the designer. To synthesize the tuning 

algorithms for WI and d , we consider the following Lyapunov candidate function 

with 

1 T  1 - T -  

2 %I 
y=-z z, V2=-tr(W1 WI), 

where gI > 0 and gII> 0 are free design parameters affecting weight learning rate and 

control performance, c~~ > 0 is the minimum eigenvalue of P. Its derivative along the 

vector field (1 1) is 

with 

Before presenting the weight tuning algorithms, let us focus on Q. With uc as in (16) and 

the upper norm bound on 7 as in (13a), we have 
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+-(W-CminW) a n  A T -  w+vwm 
gn 

where & = max (a). Note that in deriving (19) we have used the facts that 

N 

i= 1 

T T w Ylw VnlwmcVf l .  
1 

and 

N c VIIj II z II  
i= 1 51, vv>o N 

Combining (18) and (19), we come up with the following weight tuning algorithms: 

Consequently, 

Completing the square we can further rewrite (21) as: 
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where 

Ai = 2Cdnk(). a2 = bI, A3 = On (23) 

are constants independent of z. Note that (22) implies that llzll , ~ I  and d are bounded. 

Furthermore, from (22), we have 

v I -kgcmin 1211' + s 

It is seen that v is negative as long as 

Therefore, z is confined in the region GI = [ zI llzll I (&)'I. From previous lemma, 

we establish that the control error is bounded. 

4. Simulation Verification 

- 1 1 -  

Simulation on a numerical example is conducted to test the effect, deness of the proposed 

method. The parameters involved in the algorithms are chosen as 

k() =lo, 01 =011 = O S ,  g1 = g l l  = O S ,  ~ ~ 0 . 0 1 ,  AT=O.Olsec 

The basis functions for the first NN unit are chosen as: 



( ~ l i  = 0.2, 0.4, ..., XII= . ) 11 
where a = 0.5. The basis functions for the second NN unit are selected as in the 

following: 

where p = 0.5. Ten NN basis functions were used for each of the NN 

units: w E RJ , j = 10. All the weights are initialized at zero in the simulation. 

As mentioned earlier, any fault due to damage, element malfunction, and so forth, plays 

an important role in the behavior of the system. To have a realistic simulation it is 

necessary to model the aerodynamic effects of the damage. For this purpose, it may be 

said that the changed aircraft dynamics following damages to a stabilator surface is 

mainly due to an instantaneous change of the normal force coefficient of the surface, with 

the axial force coefficient being usually negligible and with the moment coefficient being 

proportional, through the geometry, to the normal force coefficient. Therefore we 

consider the expressions for fault in the simulation as follows, 

N, (.) = /3 . ( N , i  + N , r  + N,) 

is the fault function, Th=15 sec is the time instant at which the where B=l -e  

fault occurs, m=0.2 is the fault coefficient. The results are presented in Figures 14, 

where Figure 1 is the stabilization error for critical and non-critical modes, Figure 2 

shows the control signals, Figure 3 and Figure 4 illustrated the on-line updating of 

weights for the two NN units. 

-rn(t-T') 
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Also, for test purpose, we conducted a simulation on one critical mode with both jump 

and ramp faults. The results are presented in Figures 5-8, where Figure 5 is the control 

error under the ramp and jump faults occurring at Tf = 20 seconds, Figure 6 shows the 

control inputs and Figures 7 and Figure 8 are the updated weights of the networks. As 
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can be seen, with the proposed control method the system remains stable under severe 

faults and all the internal signals are bounded and smooth. 
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Figure 8-Weights Updating for the 2nd Network II 

5. Conclusion and Future Work 
Whenever an actuator fault occurs, the element of B is of the form, 

where 

[aiio f B(t - T')aii (.)I = 0 implies that the actuator is totally failing 

Iaii0 f B(t - Tf)aii (.)I = 1 implies the actuation system is health 

We are currently investigating the control problem under the following fault conditions, 

This, physically, involves a fading actuation fault in which the actuating system has not 

totally failed yet. The results will be reported in the forth coming publication. 
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